Le cadre mondial des aptitudes et des compétences pour le monde numérique

Apprentissage machine MLNG

Développement de systèmes qui apprennent par expérience et usage de données.

Notes d’orientation

Les activités peuvent inclure -- mais ne sont pas limitées à :

  • évaluation de modèles formés pour performance, robustesse et biais
  • sélection et utilisation de mesures pour examiner les produits
  • diagnostic et résolution de problèmes avant et après déploiement
  • anticipation des implications organisationnelles des modèles d'apprentissage machine concernant l'éthique, les préjugés, la confidentialité et la protection des données
  • traçabilité des résultats produits par des systèmes d'apprentissage machine.

2 3 4 5 6
Levels of responsibility for this skill

Apprentissage machine: Niveau 1

Cette compétence n’est généralement pas observée ou pratiquée à ce niveau de responsabilité et de responsabilisation.

Apprentissage machine: Niveau 2

Applique des techniques d'apprentissage machine convenues aux données, sous la tutelle de leadership technique. Analyse et rapporte les résultats et remédie des problèmes simples à l'aide d'algorithmes mis en œuvre dans des cadres et outils logiciels standard.

Apprentissage machine: Niveau 3

Applique les techniques existantes d'apprentissage machine aux problèmes et jeux de données nouveaux. Évalue les résultats et performances des systèmes d'apprentissage machine. Identifie les problèmes et recommande des améliorations aux systèmes d'apprentissage machine et aux données utilisées.

Apprentissage machine: Niveau 4

Compte tenu d'un problème et d'un jeu de données bien décrits, évalue si l'apprentissage machine est susceptible de fournir une solution efficace. Implémente des algorithmes développés par autrui. Donne conseils sur l'efficacité de techniques spécifiques, sur base de résultats du projet et de recherches plus larges. Contribue au développement, évaluation, suivi et déploiement de systèmes d'apprentissage machine. Comprend et applique les règles et instructions spécifiques à l'industrie, et anticipe les risques et autres implications de la modélisation.

Apprentissage machine: Niveau 5

Conçoit, met en œuvre, teste et améliore les architectures et les systèmes d'apprentissage machine. Sélectionne des techniques en fonction d'une vaste connaissance des forces, faiblesses et performances attendues de différentes approches. Établit de bonnes pratiques dans le développement, évaluation, surveillance et déploiement de systèmes d'apprentissage machine.

Apprentissage machine: Niveau 6

Dirige le développement de nouvelles approches et capacités organisationnelles pour concevoir, former et évaluer des systèmes d'apprentissage machine. Établit des normes et instructions pour l'application et la traçabilité des systèmes d'apprentissage machine aux problèmes de l'entreprise, et supervise leur mise en œuvre. Conçoit et supervise les directives organisationnelles sur la création, formation et utilisation de systèmes d'apprentissage machine.

Apprentissage machine: Niveau 7

Cette compétence n’est généralement pas observée ou pratiquée à ce niveau de responsabilité et de responsabilisation.