El marco global de habilidades y competencias para un mundo digital

Ciencia de datos DATS

Aplicar matemática, estadística, minería de datos y técnicas de creación de modelos predictivos para obtener información, predecir comportamientos y generar valor a partir de los datos.

Notas orientativas

Generalmente, la ciencia de datos se utiliza para analizar datos en grandes volúmenes, mucha velocidad y distintos tipos (números, símbolos, textos, sonidos e imágenes).

Las actividades pueden incluir, entre otras, las siguientes:

  • integrar métodos de matemáticas, estadísticas y modelos de probabilidad a partir de una amplia gama de procesos
  • abastecerse de datos y prepararlos para el análisis
  • identificar, validar y explotar los conjuntos de datos internos y externos generados a partir de una amplia gama de procesos
  • desarrollar conocimientos prospectivos, predictivos, en tiempo real y basados en modelos para generar valor e impulsar una toma de decisiones eficaz.
  • encontrar, seleccionar, adquirir y procesar fuentes de datos
  • integrar y limpiar datos para adecuarlos a su propósito
  • desarrollar hipótesis y explorar datos mediante modelos y entornos de pruebas analíticos
  • perfeccionar requisitos, validar, capacitar y desarrollar modelos a lo largo del tiempo para descubrir conocimientos más profundos, hacer predicciones o generar recomendaciones
  • utilizar técnicas analíticas avanzadas, tales como minería de datos y texto, aprendizaje automático, coincidencia de patrones, previsión, visualización, análisis semántico, análisis de sentimiento, análisis de redes y clústeres, estadísticas multivariadas, análisis de gráficos, simulación, procesamiento de eventos complejos y redes neurales

Niveles de responsabilidad para esta habilidad

2 3 4 5 6 7

Ciencia de datos: Nivel 1

Por lo general, esta habilidad no se observa ni se practica en este nivel de responsabilidad y rendición de cuentas.

Ciencia de datos: Nivel 2

Bajo orientación, aplica a los datos las técnicas de ciencia de datos dadas.

Analiza e informa los hallazgos, y soluciona problemas simples mediante algoritmos implementados en los marcos y las herramientas de software estándar.

Ciencia de datos: Nivel 3

Aplica técnicas de ciencia de datos existentes a nuevos problemas y conjuntos de datos mediante técnicas de programación especializadas.

Selecciona datos de las fuentes de datos existentes y los prepara para que se utilicen en modelos de ciencia de datos.

Evalúa los resultados y el desempeño de los sistemas de modelos de ciencia de datos.

Identifica e implementa oportunidades para entrenar y mejorar modelos y los datos que dichos modelos utilizan.

Publica e informa sobre los resultados del modelo para satisfacer las necesidades del cliente y cumplir con los estándares acordados.

Ciencia de datos: Nivel 4

Investiga el problema y el conjunto de datos descritos para evaluar la utilidad de las soluciones de la ciencia de datos y el análisis.

Aplica una variedad de técnicas adecuadas de ciencia de datos y lenguajes de programación especializados. Comprende y aplica reglas y directrices específicas de la industria, y anticipa riesgos y otras implicaciones de la creación de modelos.

Selecciona, adquiere e integra datos para su análisis. Desarrolla hipótesis y métodos de datos, y evalúa modelos analíticos. Asesora sobre la eficacia de técnicas específicas según hallazgos de proyectos e investigaciones integrales.

Contribuye al desarrollo, la evaluación, el monitoreo y la implementación de las soluciones de la ciencia de datos.

Ciencia de datos: Nivel 5

Planifica e impulsa todas las etapas del desarrollo de soluciones de la ciencia de datos y el análisis.

Brinda asesoramiento experto para evaluar los problemas por resolver y la necesidad de soluciones de la ciencia de datos. Identifica qué fuentes de datos utilizar o adquirir.

Especifica y aplica técnicas adecuadas de ciencia de datos y lenguajes de programación especializados.

Revisa los beneficios y el valor de las técnicas y herramientas de la ciencia de datos y recomienda mejoras. Contribuye al desarrollo de políticas, estándares y directrices para desarrollar, evaluar, monitorear e implementar soluciones de ciencia de datos.

Ciencia de datos: Nivel 6

Dirige la introducción y el uso de ciencia de datos y análisis para impulsar la innovación y el valor del negocio.

Desarrolla políticas, estándares y directrices organizacionales para la ciencia de datos y el análisis.

Establece la dirección y dirige la introducción y el uso de técnicas, metodologías y herramientas de ciencia de datos y análisis. Dirige el desarrollo de las capacidades organizacionales para la ciencia de datos y el análisis.

Planifica y dirige iniciativas de ciencia de datos estratégicas, grandes y complejas para generar conocimientos, crear valor e impulsar la toma de decisiones.

Ciencia de datos: Nivel 7

Dirige la creación y revisión de un enfoque y una cultura interfuncionales de toda la empresa para generar valor a partir de la ciencia de datos y el análisis.

Impulsa la identificación, la evaluación y la adopción de capacidades de análisis y ciencia de datos para transformar el desempeño organizacional. Dirige la provisión de las capacidades de análisis y ciencia de datos de la organización.

Se asegura de que la aplicación estratégica de la ciencia de datos y el análisis esté integrada al gobierno y el liderazgo de la organización.

Alinea las estrategias del negocio, la transformación empresarial y las estrategias de ciencia de datos y análisis.